MAX materials and MXene materials are new two-dimensional materials that have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in numerous fields. The following is an in depth guide to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively known as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, three of the elements of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, consisting of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers to the main-group elements, and X refers to the aspects of C and/or N. The MXene material is a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make sure they are have a variety of applications in structural materials. As an example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be found in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be utilized in energy materials. As an example, K4(MP4)(P4) is one in the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The outer lining of MXene materials can communicate with more functional atoms and molecules, and a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually are the etching management of the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials really are a new kind of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. For example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Additionally, MXene materials could also be used as catalysts in fuel cells to enhance the activity and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. As an example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For instance, MXene materials bring gas sensors in environmental monitoring, which can realize high sensitivity and high selectivity detection of gases. In addition, MXene materials may also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with the continuous progress of technology and science and the increasing demand for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials will likely be further expanded and improved. The following aspects may become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques may be further explored to realize a far more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for more optimization. Down the road, the composition, structure, surface treatment and other aspects of the fabric may be studied and improved in depth to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be widely used in numerous fields, but you can still find many potential application areas to get explored. In the future, they could be further expanded, like in artificial intelligence, biomedicine, environmental protection along with other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in numerous fields. With all the continuous progress of science and technology as well as the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.